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ABSTRACT

Time series from a nocturnal boundary layer are analyzed using fractal

techniques. The behavior of the self-affine fractal dimension, DA, is

found to drop during a gravity wave train and rise with turbulence. DA is

proposed as a time series conditional sampling criterion for

distinguishing waves from turbulence. Only weak correlations are found

between DA and bulk turbulence measures such as Brunt-VAis~lA frequency,

Richardson number, and buoyancy length. The advantages of DA analysis over

turbulent kinetic energy (TKE), its component variances, FFT spectra, and

self-similar fractals are also discussed in terms of local versus global

basis functions, dimensional suitability, noise, algorithmic complexity,

and other factors. DA was found to be the only measure capable of reliably

distinguishing the wave from turbulence.
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I. INTRODUCTION

A. PROBLEM STATEMENT.

It is important to separate turbulence from gravity waves in the

atmospheric boundary layer, whether in studying wave/turbulence

interaction, or in modeling the dispersion of passive scalars such as

pollutants and aerosols. This is because turbulence and gravity waves

differ greatly in phase coherence, periodicity, and transport properties.

Also, purely linear waves transport only momentum and energy, while both

non-linear waves and turbulence can transport heat and scalars (Stull,

1988). However, turbulent transport greatly exceeds that of non-linear

waves. Thus, using temperature, pressure, or wind speed variances can

lead to dispersion overestimates, if gravity waves and turbulence are both

present. Vertical humidity transport also depends on the presence of

gravity waves; this affects stratus cloud and radiation fog formation.

However, current methods of separating waves from turbulence either do not

apply to a broad spectrum of cases, or are not operationally useful.

B. THE GOAL.

The goal is to see if the fractal dimension of a temperature or wind

speed time series can be used to distinguish atmospheric boundary layer

waves from turbulence. A related goal is to compare the relative merits

of fractal dimension and other, more standard wave/turbulence measures

such as Richardson number (Ri), Brunt-Viis~ll frequency (BVF), buoyancy

length scale (IB), Fourier spectra, variances, and turbulent kinetic energy

(TKE), applied to wave/turbulence discrimination.

C. WHY FRACTALS?

Real turbulence and waves should display quite different values of

fractal dimension because pure waves are not self-similar. Thus fractal
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dimension may be a useful wave/turbulence discriminator. The following

discusses this possibility in more detail.

1. Fractals and Turbulence.

Fractal geometry is part of the chaos and non-linear dynamical

systems theory, developed over the past few decades (Moon, 1987). Fractal

geometry appears ideally suited for studying turbulent flows in the

atmosphere because it is based on self-similarity. Self-similarity is

defined as, "A property of a set of points in which geometric structure on

one length scale is similar to that at another length scale." (Moon,

ibid) In fluids where waves or eddies lack rigid geometric structure, it

implies that the statistical properties describing the ensemble mean

geometry of the flow structure at one scale are similar to those at a

different scale. Richardson (1922) recognized this self-similarity when

he wrote,

"Bigger whorls have little whorls,
which feed on their velocity,

and little whorls have lesser whorls,
and so on to viscosity."

Sreenivasan and Meneveau (1986), and Presad and Sreenivasan

(1990) established that interfacial convolutions between turbulent and

non-turbulent regions of a shear flow are self-similar and therefore have

a fractal dimension. Schertzer and Lovejoy (1984) used the concept of

self-affine fractals to show that no abrupt transition from two to three

dimensional turbulence exists between large and small atmospheric eddies;

rather, atmospheric stability induces a dimensional continuum from

synoptic to Kolmogorov scales. Self-affinity is a generalization of self-

similarity, discussed extensively in Chapters II and III.

2. Fractal Dimension of vs. from a Time Series.

Packard et al. (1980) and Pawelzik and Schuster (1987) have

studied fractal dimensions of chaotic systems inferred from a time series.

These authors studied the dimension of the attractor of the chaotic

system. Moon (ibid) defines an attractor as, "A set of points or a

2



subspace in phase space toward which a time history approaches after

transients die out."

The aim here is to find the fractal dimension of the time series

itself, not the dimension of the phase space attractor or the dimension of

the turbulence field in real space.

Since a time series is a digital sampling, a time series trace

of a fractal process should also show fractal characteristics. For

example, Carter et al. (1986) found that the known fractal characteristics

of cloud geometry in real space were also evident in an apparent time

series of their infrared intensity versus azimuth viewing angle.

3. Advantages of Fractal Analysis.

Fractal analysis has potential advantages over standard spectral

analyses. 1) Less data manipulation is required. Standard Fourier

transform techniques require that the data be periodic within the data

window to avoid introducing high frequency noise into the spectrum. This

requires tapering the data within the window so that its endpoints have

the same value. 2) Fractal analysis' biggest advantage is that data

breaks, such as truncated gravity wave trains or breaking Kelvin-Helmholtz

instabilities and other such discontinuities pose no problems. In Fourier

analyses a linear combination of wave numbers much higher than the time

resolution is required to accurately account for such break points. This

is because the basis functions for standard spectral analysis: sinusoids,

Legendre or Leguerre polynomials, Bessel functions, etc., are infinite in

length, rather than discrete; whereas in fractal analysis, the resolution

itself becomes a discrete Chapeau basis function. And this basis function

inherently spans the ideal range: from the chosen span of the time series

to the available limit of resolution. Chapeau functions shorter than the

available resolution are not required to portray discontinuities.

The above does not imply that fractal analysis should replace

traditional spectral analysis. But fractal analysis may supplement and

3



sometimes substitute for Fourier and other standard techniques,

particularly in discriminating waves from turbulence in a time series.

4



II. THEORY

A. CURRENT METHODS OF SEPARATING WAVES FROM TURBULENCE.

Some current methods of separating waves from turbulence are discussed

as follows.

1. Cross-spectral Method.

Described in Finnigan (1988), this method assumes, since linear

waves do not transport heat, that for waves the vertical velocity cross

spectrum with temperature exhibits a small cospectrum and large quadrature

spectrum, but for turbulence a large cospectrum and small quadrature

spectrum (i.e., the temperature wave lags the vertical velocity wave by

900 in phase). Though this sounds appealing, Finnigan reports that,

".. .linear behavior of gravity waves close to the ground is the exception

rather than the rule so that the condition of the quadrature spectrum

(being] much greater than the cospectrum is of no value as a wave

detector."

2. Spectral gap Method.

Nai-Ping (1983) lists several authors who find a wave/turbulence

gap in the boundary layer power spectra. Caughey (1977) relates the

position of the spectral gap to the Brunt-Vdisdlh frequency (BVF), which

theoretically is the highest frequency of gravity wave that the atmosphere

will support. The method is unreliable since spectral gaps are not

guaranteed. Finnigan (ibid) states further that, "A characteristic of

gravity waves that interact strongly with turbulence is that, while their

wavelengths are much longer than any turbulent length scale, their

frequencies are within the energy-containing range of the turbulence."

That is, though turbulence and waves may both be advected by mean winds,

waves have an additional phase velocity which is included in their

apparent frequency with respect to a fixed sensor. Thus, a spectral gap

may exist in wave number, but not in the frequency domain which must be
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used to separate waves from turbulence in a time series. Caughey and

Readings (1975) concur, saying, "In the presence of significant

turbulence, however, it is difficult to see how even these [spectral]

techniques will help unless the wave and turbulence fall in different

frequency bands."

3. Phase Averaging.

Finnigan (ibid) describes this method as "...taking ensemble

averages of the time series, the ensembles being consecutive portions of

the record with the duration of each portion equal to the period of a

chosen reference wave."

Phase averaging identifies a single wave portion of the signal,

and for example, is used operationally to separate ocean tide

constituents. Subtracting the wave and mean from the signal leaves

turbulence as the remainder. One drawback is that the wave frequencies

must be known a priori. This presents no difficulty when dealing with

ocean tides, since the frequencies are well known. But for the

atmosphere, gravity wave frequency is not always known. The most reliable

evidence of near surface gravity waves is periodic surface pressure

fluctuations (Finnigan, ibid); thus, a surface microbarograph array or

more complex methods are needed to determine wave frequency. However,

most tower sites lack microbarographs. Further complications arise for

phase averaging if wave amplitudes change greatly with time, if the wave

loses coherence after a few periods, or if dispersion changes the wave

frequency. However, the discussion below shows how fractal analysis

avoids many of these difficulties.

B. BASIC CONCEPTS OF SELF-SIMILAR FRACTAL DIMENSION.

The minimum number of boxes of side v (or circles of diameter E)

needed to cover a set of points on a two-dimensional plot scales as

6



~F

where D is defined as the capacity dimension of 'he set (Moon, ibid), and

F is the lacunity (see Section C). If the set consists of a straight

line, then D = 1 because twice as many boxes are needed to cover the line

if the box length is cut in half. If the set consists of uniformly

distributed points in a plane, then D = 2, since four times as many boxes

are needed to cover this set if the box length is halved.

If the points are not uniformly distributed, then D can be non-

integer. The set of points is then fracta], and the sets' fractal

dimension is given as D, defined in the limit as e approaches zero. This

definition is callea the box dimension, DB, (Mandelbrot, 1985), and is

given as

Da = lim logN(e)
8-0 log1 (11.2)

The Cantor set, shown in Figure 1, is an example of a set having non-

integer DB. This set is formed from a line segment by removing its middle

third. The middle third of each remaining segment is then removed, and

the process is repeated to infinity. This set is self-similar because the

geometric structure displayed at a length scale of unity is reproduced, or

similar to all scales removed by successive factors of three. If the

original line length is unity, N(1)=l boxes of side e = 1 are needed to

cover the set. If e=1/3 then N(1/3)=2, and if c=1/9, then N(1/9)=4, etc.

Thus, e is generally 31, and N(t) is 2', where n = 0,1,2,3,...,- (Grebogi

et al., 1987).

From equation 11.2, noting that n- implies e-0, D, for the Cantor set

becomes

7
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Dj = linm log2 = 12 = 0.63092... (11.3)
n-- log 3' log3

intermediate between a point (D8 = 0) and a line (DB = 1).

Unlike the analytic Cantor set, DR must be evaluated numerically for

most fractal data sets. This is done by removing the limit in 11.2 and

reordering terms to get

logN(s) = l3gF-Dloge .(11.4)

Then -DR is the slope of the plot of log N(e) vs. log z, and log F is the

y-intercept.

C. ALTERNATIVE ALGORITHM FOR CALCULATING FRACTAL DIMENSION.

If a set of points, such as a geographical coastline, consists of a

continuous curve in two dimensions, Mandelbrot (1977) describes another

approach to determine fractal dimension. Here, curve length is defined as

L(e) = eN(s) (11.5)

where N(c) is given as

_ F (11.6)

and F is again the lacunity.

Lacunity relates the "length" of one fractally scaling curve to

another of the same D. To illustrate, assume that the eastern coastline

of the United States is fractal, and C is constant along its entire

length. The D from Baltimore to Norfolk is the same as from Baltimore to

Miami. For any t, segment two will clearly be longer in measure than

segment one. Then, 11.6 show that the step length ratio will be

Using 11.6 in 11.5, L(t) can be written as
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F,
N(,) CD F Fy (11.7)

N22(C) '2  F2

L(e) F FCl D .(I .)

Taking the log of 11.8 yields the straight line equation,

logL(e) = logF + (1-D) loge . (11.9)

Plotting log L(e) versus log e, the resulting slope yields (1 - D).

To find D, first find L(e) at the maximum value of a, e.. Then, from 11.9,

log L(s0 ) = log F + (1-D)loge0 . Now find L(e) at the smallest available E,

si, so II.9 becomes log L(ti) = log F + (1-D)log ti. This yields two

equations with two unknowns, D and F, so ideally,

L(e,)]log [
D = Ls)(11.10)

log [- :

In practice, the measured time series will contain some noise, so L(E)

will not be exact. Also, the data may only be fractal over a certain

range, so that the choice of z. and vi is not completely objective. Thus,

multiple values of L(e) should be found, and some form of regression used

to find the slope of the log-log plot. This is discussed further in

Chapter III.

This algorithm is equivalent to covering the curve with circles of

diameter t, so that L(t) is the minimum number of circles of diameter t

required to cover the curve times their diameter. Thus, L(c) is measured

by opening a compass to a constant span, z, and walking its legs along the

curve.

10



Mandelbrot (1985) calls this estimate the "compass dimension", Dc.

To show that Dc us equivalent to D3 , take 11.8 and solve for D to get

D = logL(c) - log(F) + 1 (11.11)
log-

Substituting L(s) from 11.5 gives

D logN(e) - log (F)

log I

and in the limit as e - 0, since N(e) is much larger than F, this yields

D = im logN(e) (11.13)
-0 1og

which is DB.

Fractal geometry can be used to measure the jaggedness or degree of

convolution of a curve. Mandelbrot (1977), and Sreenivasan and Meneveau

(ibid) show that the length of a self-similar curve increases without

limit as the resolution increases. This length increase follows a power

law, and the fractal dimension of the curve can be inferred from the

exponent. The fractal measure of curve jaggedness is central to this

thesis.

D. Dc COMPARED WITH D,.

Though Dc and DB are identical, which is easier to calculate for a

time series? A box algorithm divides the data plane into discrete boxes

of length a, where N(s) gives the number of boxes containing at least one

point of the curve. With digitized data the shape of the curve between

discrete data points is unknown. Thus, it is simplest to assume a

straight line Chapeau function between data points. As before, one plots

log N(e) vs loge to find D*. a cannot be smaller than the ordinate

distance between three data points, 2t,, because for e < t, the curve scales

as a one dimensional line, the assumed shape between adjacent data points.

11



For the compass algorithm L(e) = eN(t). Then, the slope of the plot

of log L(a) vs loge yields Dc .

Though both algorithms give identical results, the former is less

efficient for a single curve. This is because every box in the domain

must be checked, even though most boxes are empty, while compass stepping

considers only filled circles with points on the curve. Thus, compass

stepping is more efficient.

E. APPLICATIONS TO TIME SERIES.

Several authors, Carter et al. (ibid), and McHardy and Czerny (1987),

have measured fractal dimensions for time series. Unlike coastlines, a

time series plot has axes with different units of measure. This poses a

difficulty, for how can "length" of a time series trace be measured if the

units are not uniquely defined? And once defined, will different scaling

ratios give different values of Dc?

Mandelbrot (1985) shows that though calculable, Dc may be

theoretically meaningless for a time series, and can actually exceed two

if the y to x-axis scaling ratio is large enough. This requires a

different approach to measuring fractal dimension, described in the next

section.

F. SELF AFFINE FRACTAL DIMENSION.

McHardy and Czerny (ibid) apply a slightly different, "self-affine",

definition of fractal dimension when analyzing their time series data.

"Self-similarity" implies that geometric structure or their ensemble

statistical properties remain similar between scales removed along all

axes by the same constant factor. "Self-affinity" requires at least one

different constant factor among the axes. Thus, McHardy and Czerny define

their self-affine "length metric" as

12



0

where now the abscissa scaling changes by the same factor, t,/C,+i, each

time that t changes by the factor s/i./t. (their length metric differs from

the more traditional self-affine length metric, which has the integrand,

([F(t+t)-F(t)]2 + S))'. This leads to,

D = - dlogL(t) ((I.15)

dloge

L(t) from 11.14 will be much longer at small t, but note that D in

11.15 is defined as the rate of change of log length with log resolution,

not the ratio of log length to log resolution. Since time, t, cancels in

the length metric, L(c) only has units of amplitude. This avoids

arbitrary scalings between amplitude and time units and makes the problem

one dimensional, so D is less than unity. 11.14 seems the natural choice

for evaluating time series. Hereafter, D from this method will be

referred to as D,.

G. D, AND NOISE.

L(e) calculated from 11.14 will contain some contribution from noise.

The noise is statistically independent of the signal. If its level is

known, its contribution to L(t) can be estimated by the formula,

L2m = L28Vt + L
2.. White noise has DA = 1, and its effect is to increase

the fractal dimension of the time series. (McHardy and Czerny, ibid)

H. FRACTAL DIMENSION AND STABILITY.

To explain why DA for an atmospheric time series might be related to

stability, imagine three idealized cases:

1. A very stable atmosphere with no perturbations,

2. A stable atmosphere perturbed only by a single, linear

gravity wave,

3. An unstable, highly turbulent atmosphere.

13



In case 1, a time series of the velocity components, temperature, or

pressure would be a straight line with a Dc of unity, or a DA of zero.

A time series from case 2 would be a sinusoid with a frequency equal

to that of the wave (Stull, ibid). Dc of a single sinusoid is in principle

unity, and DA zero, since it is not self-similar or self-affine. This is

shown numerically by calculating DA. Figure 2 shows the log L(t) versus

log t plot for this algorithm calculated on a sinusoid with a wavelengthl

= 1800 units. The horizontal plateau through scales less than 1/3 shows

that the wave looks one dimensional.

Since turbulence has been observed to be fractal (Sreenivasan and

Meneveau, ibid), a time series from case 3 should be fractal, and have a

dimension greater the previous cases.

If these three cases were the only ones possible, fractal dimension

would clearly relate to stability, i.e., DA would be zero for stable

atmospheres and greater than zero for unstable atmospheres. The real

atmosphere is a complex continuum of cases. For instance, a moderately

stable atmosphere can still display intermittent turbulence, and thus have

a DA greater than zero.

The three simple cases illustrate that for a continuum of cases,

fractal dimension will change with stability. However, they shed no

detail on whether this change will be abrupt or smooth, what parameters

will correlate with this change, or whether this change can be used to

infer the presence, development, or decay of atmospheric gravity waves.

This thesis investigates these issues.

I. RELEVANT CONCEPTS OF GRAVITY WAVE AND TURBULENCE THEORY.

1. Gravity Wave Characteristics.

Gravity waves in the stable boundary layer can be generated by

a number of mechanisms, among them are wind shear (Kelvin-Helmholtz

instability), impulses such as thunderstorms, and flow over an obstacle.

14
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Their amplitudes can vary from a few centimeters to 200 meters, with wave

periods of less than a minute up to 40 minutes (Stull, ibid).

The generation of waves by flow over an obstacle has particular

significance in the present study. Hunt (1980) gives the natural

wavelength of flow over a hill as

A = 2rtU/BVF , (11.16)

where U. is mean wind speed. The hill "length" is given as L1, .. .the

distance from the hill top to where the elevation is half its maximum."

He shows that if A 2 5L, then lee waves are generated having ) much greater

than the hill length. Further, Hunt shows that if A I 2L, then strong lee

waves are possible.

2. Turbulence Characteristics.

Unlike gravity waves, turbulence is treated stochastically due

to finite computer power. It is seen as many different size eddies

juxtaposed to and embedded within each other. Unlike gravity waves it is

three dimensional, a-eriodic, chaotic, quasi-random, and thus has been

studied through statistics such as variances and covariances. Turbulence

is also associated with either dynamic or static instability, with high

Reynolds number, low Richardson number, and high fractal dimension.

3. Transport.

Linear waves differ from non-linear waves. Like turbulence, non-

linear waves can transport energy, momentum, heat, and scalars such as

aerosols, whereas purely linear waves transport only energy and momentum.

This is because the temperature and vertical velocity fields of linear

waves are exactly 90 degrees out of phase, so their covariance integrated

over a wavelength is zero. So, it is important to distinguish waves from

turbulence when predicting scalar dispersion.

4. Turbulence and gravity waves.

Many papers exist on gravity wave effects on turbulence

generation and wave and turbulence interaction. The concept of a gravity
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wave transferring energy to Kelvin-Helmholtz waves which then "break" is

widely used as a model for turbulence generation by waves (Stull, ibid;

Atlas et al., 1970), though this model is not universally accepted

(Hines, 1988).

However, within this context, Gossard et al. (1985) suggests a

generation mechanism for boundary layer turbulence where the local

gradients of 0, u, and v increase steadily, together with decreasing

turbulence. The vertical shear eventually reaches an insupportable value

of local Richardson number, leading to local Kelvin-Helmholtz instability

and a rapid onset of fluctuations growing into turbulence.

This mechanism will be discussed in the context of fractal

observations in Chapter IV.

By phase averaging, Finnigan (ibid) was able to resolve the wave

and turbulent portions of the total energy, and showed that, during the

first quarter of a wave cycle, horizontal turbulent kinetic energy was

generated. Vertical turbulence was generated during the subsequent third

of the cycle. Both of these energies were transferred from the wave to

the turbulence. They point out that the wave seemed to modulate the

turbulence; however, the presence of the turbulence had no apparent effect

on the wave.

The above cited papers, and many observational papers such as

Caughey and Readings (ibid), Caughey (ibid), and Nai-Ping (ibid), make it

apparent that waves and turbulence commonly coexist in the boundary layer,

and turbulence generation can sometimes depend on the wave.
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III. METHODS

A. DATA.

The data sets used in this experiment were obtained from the Boulder

Atmospheric Observatory (BAO), whose facilities are described by Kaimal

and Gaynor (1983). The data consist of samples at eight different levels:

10, 22, 50, 100, 150, 200, 250, and 300 meters, of:

1. u, v, and w velocity components sampled at 10 Hz by sonic

anemometers.

2. wind direction and speed at 1 Hz by propeller vane anemometers.

3. temperature at 10 Hz by platinum wire thermometers, and at 1 Hz
by quartz thermometers.

The 1 Hz data were available only as 10 second block averages. The 10 Hz

data were available at both 10 Hz, and as 10 second block averages.

Noise levels for the data are : .01 0C for the platinum wire

thermometer, and S .03 m s-1 for the sonic anemometers (personal

communication with J. Gaynor, NOAA Wave Propagation Laboratory).

The data were provided on 9 track magnetic tapes. The tapes, and

FORTRAN programs for reading them, were provided by John Gaynor and Dave

Welch of the NOAA Wave Propagation Laboratory. These programs were run on

a Sun 4 computer provided by the Naval Postgraduate School (NPS) Computer

Science Department. The output from the programs was in unformatted,

binary form. The data was analyzed on the NPS mainframe computer. Since

the mainframe and Sun use different representations for binary numbers,

the data files were converted to ASCII before electronic transfer to the

mainframe.
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The data covered three time periods. These periods are (in MST):

Period A: 2340 September 7 through 0340 September 8, 1983

Period B: 0440 through 0620 September 9, 1983

Period C: 0000 through 0620 September 19, 1986

B. PICKING A PERIOD OF INTEREST.

To pick a time period of interest, time series were plotted for the

10 Hz temperature data at levels 4 and 5 (100 and 150 meters) for all

three time periods. Since the hope was to find gravity wave activity, the

time series plots were checked visually for wave evidence. The

temperature trace was inspected because it appeared to be the least noisy

of Lhe data available. Such a signature appeared during period A at level

4, between 0040 and 0105 MST, September 8, 1983. Figure 3 shows this

time series, with the wave period occurring in windows 21 through 27.

The wave was believed to be induced by the southerly flow over a small

hill to the south of the tower, since the prevailing winds were southerly

throughout the time series. To investigate this, equation 11.16 was used

to calculate 1, with an observed BVF of 0.03 Hz, and U. = 9 m s-. This

yielded a value of I = 1900 meters. The base of the hill was determined

to be at an elevation of 5220 feet, and the top at 5280 feet. By the

definition given in the previous chapter, L, was measured horizontally from

the top of the hill to the 5250 foot contour in the direction of the

tower, a distance of around 250 meters; thus, 5L, = 1250 meters. This

fits the condition for I Z 5L, for lee waves to be generated by the

hill.Both prior to and after the wave period, the BVF was less than 0.01

Hz. During these periods, I would be greater than 6200 meters, which is

well out of the range for lee wave formation. The appearance of the wave

only when the condition for lee waves was met led to the conclusion that

the observed wave was terrain induced. There were two other periods

during windows 43 through 53, and 61 through 66, when conditions for wave

generation were approached, but not as closely. Waves did not appear in
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the time series during these periods.

The other periods showed no clear evidence of waves. Period C showed

pronounced noise spikes at 20 minute intervals, and high noise levels

throughout most of its length.

Another feature of period A was a region of reduced temperature

variance immediately following the "wave" ep.sode. This allowed a

comparison of the fractal characteristics of both wave and non-wave

portions of the time series. Thus, the four hours from period A at level

4 was chosen for study.

C. ANALYSIS METHODS.

Dc, DA, turbulent kinetic energy (TKE) and its component velocity

variances, bulk Richardson number (RB), Brunt-Vdisdld frequency (BVF),

buoyancy length (1i), and fast fourier transform (FFT) spectra were all

tested as analysis tools on the u, v, w, and T time series at level four.

RB, BVF, and 1B are bulk measures, and were taken across levels three to

five, a vertical distance of 100 meters. The above parameters were

checked for possible correlation with P.

The biggest disadvantage )f bulk measures is that they are weighted

over the entire layer, not at the sensor itself. Dc, DA, TKE, FFT spectra,

and variance are local values valid at the sensor only. Thus, if an eddy

is smaller than 100 meters (the bulk layer thickness), then its effect

will be measured locally at the sensor, and impact the local measures, but

the eddy signature may not appear at levels above and below the level of

interest where the gradients of U, V, and 0 are measured. Thus, the eddy

signature may appear on a local measure, but not on a bulk measure.

1. Dc analysis.

The characteristics of Dc of the time series were explored by

applying Mandelbrot's "compass" algorithm to the data, and making log-log

plots of the measured length of the time series versus z. This was done

for adjacent three minute long windows throughout the entire four hours of
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the level 4, 10 Hz temperature data. The minimum t on these plots was set

to two data points (.2 sec), because for smaller r the curve will scale

linearly, due to the assumption of a straight line connecting the data

points. The maximum e was set equal to the size of the window, or 1800

data points, for the first run. For all runs, the coordinate axis of the

time series was expanded by a factor of 100, so that .1 seconds on tile

ordinate was equal to .010C on the coordinate.

The first run showed for all windows that the curve scaled

linearl. (the slope on the log-log plots was zero) for all log e a 2.25,

or t > 17.8 seconds. For most windows, the linearly scaling portion began

above t 3.2 seccnds. To get better resolution on the fractal portion of

the curve, the run was repeated with a maximum e = 178. A typical plot

from this run is shown in Figure 4.

To get Dc for a given window, a regression line must be fitted

to the steeper, linear portion of the curve. The simple linear regression

from Beyer (1987) was used for this process. The linear region varied

from window to window, depending on the upper scale of what waz presumed

to be the turbulent eddies. The upper cut-off, t,, for the range used in

the regression was determined manually for each window. To be most

objective, the following algorithm was used:

1. A line was drawn with a straight edge along the steepest, linear
portion of the curve (point A in Figure 5).

2. A second line was drawn with a straight edge along the shallow,
trailing edge of the curve at high values of log t.

3. The ordinate where these two lines intersected was taken as the
upper cutoff.

Son;e windows also required that the minimum c used for the

regression, ti, be determined manually in a similar fashion.
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2. D, Analysis.

The characteristics of DA were explored by applying the algorithm

of McHardy and Czerny (ibid) to the time series and making log-log plots

of the length metric as a function of t, the time resolution. This

wasdone for the temperature and three velocity components, using

sequential three minute windows for the entire four hours of data. Three

minute windows were chosen, since what appeared to be a gravity wave in

the data had a period of about 200 seconds, and the hope was to resolve it

and perhaps catch its onset and demise. The minimum e used was two data

points (.2 sec) because the time series scales linearly for r < 1, sincea

straight line was used to connect data points. The maximum e was set to

the window size of 1800 data points for the first run. This allowed

approximately three decades of dynamic range.

The first run showed for all windows that log L(e) vs. log E had

constant, non-zero slope for e from 2 (.2 sec) to around 600 (1 min). For

e > 600, many of the plots no longer had constant slope. Thus, to

calculate DA, only log e : 2.75 (e = 600) was used, since this still

provided a satisfactory 2.5 decades along the ordinate. As discussed

earlier, an additional reason for only using t < 600 is that for a single

sinusoid, log L(e) vs. log s shows nearly zero slope for t less than a

third of the wave period (Figure 2), whereas for e > 600 the plot is

nearly vertical. Since the wave in the data had a period of around 3

minutes, or 1800 data points, taking t to be less than 600 data points

assures that D, will be calculated in the portion of the plot that is

linear and nearly horizontal. Thus, unlike Dc, no subjective window by

window cutoff of c is needed to calculate DA.

To get DA for each window, again the simple linear regression

from Beyer (ibid) was used to fit a line through the log-log plot.
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3. Determination of Mean Turbulent Kinetic Energy (TKE).

Mean turbulent kinetic energy is defined as (a. + a,2 + a ),

where ., a,, and a. are the respective standard deviations of u, v, and w.

Stull (ibid) notes that it is customary to find the variances over a

period of 30 minutes to one hour, because the apparent "spectral gap"

occurs at about 1 hour, and allows a convenient separation between "large"

scales and "small" scales. However, this procedure includes all

variations as "turbulence"; so it would include gravity wave energy along

with real turbulent energy.

For comparison, TKE and variances were calculated instead over

the same three minute intervals as Dc and DA. All other parameters such

as bulk Richardson number or Brunt-VdisAlA frequency were also calculated

over three minute windows. It should be emphasized that this will not

eliminate the problem of counting gravity wave kinetic energy as turbulent

kinetic energy.

4. Bulk Richardson Number (RB) Determination.

Richardson number was evaluated for possible correlations with

Dc or DA. Ideally, the flux Richardson number, Rf, or the gradient

Richardson number, R, should be used, since the interest is in the local

stability at the sensor. Both Rf and R require that the local vertical

gradient of the mean wind be known, but since the sensors were spaced 50

meters apart vertically, the local gradient was not available. Hence, the

bulk Richardson number, R., was used.

g AU, Az

where A represents the quantity difference between the bottom and top of

the layer. For the calculations the layer thickness, Az, was 100 meters,

with the layer centered on the level of interest.

The virtual potential temperature, 0,, was assumed to be equal

to the potential temperature, 0. Though Stull (ibid) emphasizes that 0,
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can differ from 0 by up to 40C, this will not seriously affect RB for three

reasons. First, a6a/8z will not differ much by substituting 0 for 0,;

second, a 40C difference in the denominator will not change RB by more than

10 percent; and third, the absolute value of RB is not important. RB is

only important as an indication of stability changes.

Re was block averaged over three minute windows to correlate it

with D, and Dc over the same window length.

5. Determination of Brunt-VAisala Frequency (BVF).

The BVF was chosen to measure static stability and, like RB,

possible correlations with Dc or DA were tested. BVF is defined as

BVF = a U ,

e, az

As with R., the quantity aOD/az was approximated by An/Az; thus, it is not

a local measure of static stability. 0 was again assumed equivalent to

0, because the interest was in changes in BVF with time, not actual values.

6. Buoyancy Length (1.).

16 is given in Stull (ibid) as the standard deviation of the

vertical velocity divided by the Brunt-V~is~lA frequency (lB = a./BVF), and

is meant to be a measure of the dominant eddy scale.
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IV. RESULTS AND DISCUSSION

A. WAVE AND TURBULENCE PERIODS.

Figure 3 shows a time series of the temperature data taken from the

resistance wire. Cursory inspection shows both "wave" and "turbulence"

like episodes. Figure 6(a), taken over three minute windows (1800 data

points), shows several distinct periods where the temperature variance,

OCT , peaks. The most pronounced peak occurs from windows 21 through 28,

cotaneous with what appears to be a wave. Three other periods are

cotaneous with what appear to be turbulent fluctuations during windows 45

- 47, 64 - 67, and 73 - 75. The other aT2 peaks, such as window 62, were

caused by a continuous temperature change across the window that does not

seem associated with either a wave or turbulence. This is missing in the

three minute a,2 and o.2 records also shown in Figures 6(b) and (c), but

does appear in aU2 (Figure 6(d)). Again, the c,', ao2, and a.2 records do not

distinguish between wave-like and turbulence-like episodes; all appear as

local maxima.

Since the variances peak during what appears to be a wave portion of

the time series, this suggests that variance by itself cannot reliably

indicate the presence of turbulence, and thus indicate the dispersion rate

of scalars such as heat or aerosols.

B. FRACTAL DIMENSION, DA, OF THE TIME SERIES.

Fractal dimension, DA, on three minute windows was readily attainable

from the time series. Figure 7 shows a typical log L(c) versus log t

plotfor the temperature data. Most of the plots remained nearly linear

for up to three decades on the ordinate, (from t = 2 (.2 sec.) to 600 (60

sec.)), lending robustness to the measured value of DA.

Figure 8 shows a plot of the three minute DA values. DA varies

throughout, with the lowest values occurring during the wave episode in
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windows 21 through 28. There are three other distinct local minima

occurring in windows 42, 63, and 78, which were associated with what

appear to be low turbulence levels on the time series. Two of these

minima occur just before maxima at windows 46 and 66 which are due to the

"turbulent" episodes mentioned in the previous section. A possible

rationale was discussed in section I.

This behavior of D, is not confined to the temperature data. Figure

9 compares DA from the temperature series with those from the thfee

velocity components. The patterns of the DA curves agree well, with the

minima and maxima again occurring in or near the same windows on all

plots. Scatter plots comparing DA for one time series with another are

given in Figure 10, and show good linear correlation. That the DA for

these different data sets agree closely lends confidence to this analysis.

The above results seem to discriminate between the wave and

"turbulence" episodes, and agree well with the expectation that periods of

wave activity or low turbulence should have lower DA than more turbulent

periods. However, the largest DA at window 36 bears more scrutiny, since

it is cotaneous with a relatively calm appearing, low variance portion of

the time series. This may be because DA, being self-affine, has a i/t

scaling factor in the length metric, L(t), which gives more weight to

variations at smaller scales. This region of the time series may be

manifesting smaller scale turbulence. This topic was explored further in

section I.

C. CONDITIONAL SAMPLING USING A DA CUTOFF.

The above results point to the possible use of DA - 0.35 from the

temperature, or DA = 0.5 from vertical velocity data as conditional

sampling cut-off values to remove wave data from hot-wire and sonic

anemometer recordings, while retaining most of the real turbulence. This

would remove most of the inappropriate wave fluctuations from turbulence

intensity and dispersion calculations. However, more data containing both
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waves and turbulence must be analyzed before being able to state this with

confidence.

D. D, AND BREAKING WAVES.

In the latter part of the "wave" period, all values of D, calculated

from the T, u, v, and w time series show jumps which are cotaneous with

the advent of a gain in high frequency fluctuations in the T and w time

series. These may indicate "wave break", or a wave-turbulence energy

transfer event. Again, the variances and TKE show the opposite behavior,

falling precipitously. This suggests that, unlike other purely local

measures, D, may be useful in C>termining wave break episodes. Local

minima in DA of short duration are also seen prior to the three turbulence

episodes.

A suggested turbulence generation mechanism (Gossard, ibid) explained

in Chapter II, is repeated here. This mechanism requires that local

gradients of 0, u, and v increase steadily, together with decreasing

turbulence. The vertical shear eventually reaches an insupportable value

of local Richardson number, leading to local Kelvin-Helmholtz instability

and a rapid onset of fluctuations growing into turbulence. Waves may

augment the local shear, thereby instigating an instability, but this may

also occur in the absence of waves. The above observed local DA minima,

just prior to rapidly growing fluctuations for both the "wave break" and

"turbulent" episodes, is consistent with this proposed mechanism.

However, the local critical Richardson number hypothesis could not be

tested readily with this data set, due to the minimum 50 meter vertical

separation of the sensors. The bulk Richardson number, RB, which was

measured, does plummet at what appears to be the time of "wave break", as

well as prior to one of the "turbulence" episodes, but this does not occur

prior to the other two turbulence periods.
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E. FRACTAL DIMENSION, Dc.

Since this form of fractal dimension is sensitive to the scaling of

the y-axis of the time series, an arbitrary scaling of .1 second = 100 0C

was chosen. As expected, Dc behaved differently from DA, rising

dramatically during the wave episode, and falling immediately after. This

same behavior was observed during the turbulent episodes; thus, Dc did not

distinguish between the wave and turbulence. Moreover, the algorithm is

long and ad hoc, with its assumed y-axis scaling and subjective cutoffs

for calculating slopes of the log-log plots. Moreover, Mandelbrot (1985)

warns that it is ill-suited for application to self-affine data such as

used in this study. These disadvantages led to the sole use of DA for

subsequent analysis.

F. FRACTAL DIMENSION AS CORRELATED WITH BULK MEASURES OF STABILITY.

Figures 11(a) and (b) show the temperature DA compared with Brunt-

V~isdll frequency (BVF). The BVF is highest during the wave episode when

DA is minimum. The three minima in DA at windows 42, 63, and 78 occur when

the BVF is at or near a local maximum, consistent with the fact that a

higher BVF (more stable) will tend to dampen turbulence. Also significant

is that most of the DAmaxima occur when the BVF is either decreasing or

at a minimum, which indicates a less stable and more turbulent atmosphere.

However, high values of BVF occurred during both wave-like and turbulence-

like episodes, indicating little use in resolving the two. Figure 11(c)

shows a scatter plot of temperature DA versus BVF, which indicates a weak

inverse correlation.

Figure 12 shows another weak, but positive, correlation between DA and

I., the buoyancy length scale. The correlation is highest during the

"wave" episode, when la drops rapidly, simultaneous with a rapid drop in

DA. After the wave episode, DA and ls both rise.

The u and T variances and BVF show local maxima at window 62, while

the u and w variances and 1B show local minima. The T time series shows
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an enduring but rapid fall in temperature. 1B does not seem to distinguish

between wave-like and turbulence-like episodes. All such episodes show

moderate 1 on the order of 8-12 meters. Since BVF is in the denominator

of le, 1B peaks during windows 18-20, and 35-40 when BVF is low. This

seems to occur when the temperature time series is relatively calm. Thus,

large 1B does not seem to correlate with turbulence-like episodes, and 1H

does not seem to be a good measure of dominant eddy scale, as has

previously been suggested.

A comparison of DA with RB in Figure 13 shows little correlation

between these quantities, except during the "wave" period when RB rises

dramatically, indicating an increase in stability.

High correlations between DA and BVF, RB, or 1. are not expected since

D, is a local measure, whereas the latter three are bulk measures which

include measurements from widely vertically separated sensors.

Correlations might have been higher if more local but still accurate

measurements of AO and Au were available. Unfortunately this capability

is not now present on the BAO tower or other like facilities such as the

RIS0 Lamme-Fjord tower. In any event, none of the bulk measures seem to

readily or consistently distinguish between wave-like and turbulence-like

episodes.

G. MEAN TURBULENT KINETIC ENERGY (TKE).

Figure 14 shows the mean turbulent kinetic energy over three minute

windows. Like the variances themselves (Figure 6), the TKE shows a spike

during the "wave" episode, and similar spikes are also displayed during

the three "turbulent" episodes. Again, the results indicate that neither

the TKE nor the component variances distinguish between waves and

turbulence; both may have similar magnitudes.
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H. FAST FOURIER TRANSFORM (FFT) SPECTRA.

Figure 15 shows spectral density of the temperature data before and

during the wave period. Before performing the FFT, the data were linearly

detrended and tapered using a cosine squared, or Hanning, window. Even

after such processing, the FFT spectral density plots are quite noisy,

andshow only slight evidence of a spectral gap between the wave and higher

frequency turbulent fluctuations during the '-ave episode. One would

expect that the energy in components above 0.1 Hz would be heightened

during these episodes. This is not reliably evident as shown in

Figure 16.

I. ANOTHER LOCK AT D,.

One possible reason why D, seems to distinguish between waves and

turbulence is that the factor l/c in the length metric weights the smaller

scales more heavily, and in the stable boundary layer the turbulence is

expected to be generally smaller scale than waves.

If this is true, then D, may be simply a "scale separator", and its

ability to separate waves from turbulence might be lost in a decreasingly

stable, or convective boundary layer where turbulence scales may be as

large as wave scales.

This could also explain the anomalous rise in DA after the "wave"

episode, described in section B, during a period of what appears to be low

turbulence in the time series. On the other hand, the wave breaks in

windows 25-28 may initially blend the potential temperatures across levels

3 to 5 (see Figure 17), resulting in high 19 and low BVF after window 35.

This is consistent with the local maxima in the w and v variances around

window 35. However, the large DA maxima in window 35 of the u, v, w, and

T traces may suggest continued turbulent blending, principally at smaller

scales, even after the level 4 and 5 potential temperatures have become

well-mixed.
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DA for this perhaps smaller scale blending may be unduly accentuated

by being normalized by i/ea, where n was assumed to equal unity. For

inertial eddy cascade processes, n may indeed be less than unity. An n <

1 would tend to balance the effect on DA from smaller scale turbulence.

Future work might pursue this issue, attempting to find a theoretically

justified value for n. This will also require a modification of the

integrand in 11.14 so that L(t) retains its proper units of amplitude

only.

As a first guess, since the turbulence energy spectrum tends to have

a -% slope in the inertial subrange, one might expect the turbulence

velocity spectrum to have a -(%)- slope. In that case, perhaps the

correct self-affinity factor for inertial subrange turbulence should be n

= (%) = 0.82. However, the BAO data resolution is 0.1 seconds, which

enters the dissipation range where the spectral energy slopes are much

higher. To eliminate contributions from this range, the inner scale

cutoff would have to be at longer times, thus narrowing the dynamic range

over which DA is computed. This may be possible for convective data, since

a longer window must be used to capture fluctuations due to boundary layer

scale eddies.

Another potential complication for such an analysis is that stability

tends to compress the vertical extent of an eddy. Thus, inertial subrange

turbulence may not have a -% slope in the energy spectrum, as in self-

similar turbulence. That is, there will be less energy in the larger

scales. Mahrt and Gamage (1987) have studied vertical/horizontal velocity

aspect ratios for structure functions as a function of stability.

However, their stability categories were not well defined by P, or other

measures.
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IV. SUMMARY AND CONCLUSIONS

Time series of T, u, v, and w from a stable atmospheric boundary layer

were examined using fractal techniques. The time series were taken from

a height of 100 meters on the mast at the Boulder Atmospheric Observatory

(BAO) and were sampled at a rate of 10 Hz. The time series contained a

period of what appeared to be a terrain induced gravity wave as well as

several periods of turbulence.

Both self-similar fractal dimension, Dc, and self-affine fractal

dimension, DA, were used in the analysis. The latter was found to be

superior. This is because time series are inherently self-affine, rather

than self-similar.

DA appears to easily distinguish between the wave and turbulent

episodes, showing minima during wave episodes and maxima during

turbulence. It was the only parameter studied that reliably distinguished

the two. A conditional sampling cutoff of DA - 0.35 from fast response

temperature data is suggested as a possible wave indicator, though further

study is needed before this can be stated with confidence. Since o.

peaks during both waves and turbulence, dividing DA by a,2 could aid in

finding waves in the data by further enhancing the difference in D, between

waves and turbulence. Similarly, turbulent episodes could be further

distinguished by multiplying DA by o/.

The need to account for the presence of waves when calculating scalar

dispersion in the atmosphere was discussed, and three currently used non-

fractal methods for separating waves from turbulence data were described.

DA also shows promise as a means to resolve wave-turbulence energy

transfers, or "wave break" events.
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Correlations between DA and various bulk measures of stability were

investigated, with weak correlations (correlation coefficient 5 .41) found

with Brunt-V~isdld frequency (BVF) and buoyancy length (1.), and little

correlation with bulk Richardson number (R.). The difficuly of trying to

correlate a local measure, such as DA, with bulk measures was discussed.

These bulk measures were not useful discriminater. of waves and

turbulence.

Other possible parameters for distinguishing waves and turbulence were

investigated. Turbulent kinetic energy (TKE) proved less than useful

because wave energy must be included, unless removed through phase-

averaging, which can only be applied to very ideal cases. Fast Fourier

Transform spectral plots were somewhat useful, showing a weak spectral

gap; however, their temporal resolution was poor, and the presence of a

spectral gap is not guaranteed. The computational demands of FFT methods

are also inherently much greater than in calculating DA. Since DA seems

well-behaved, it may be computed by determining L only at the inner and

outer time resolutions. Moreover, FFTs tend to treat finite wave trains,

i.e., discontinuities quite poorly. DA avoids this problem because it

involves local Chapeau basis functions, rather than global transcendental

or other basis functions. This makes DA a potentially suitable analysis

tool for turbulence intermittency and coherent structures.

Finally, the possibility that DA acts as a "scale" discriminator

rather than a wave/turbulence discriminator was discussed, and further

investigation extending this form of analysis to convective data is

suggested to explore this possibility.

An n = (%)4 self-affine scaling factor for e is proposed as perhaps

more suitable for turbulence, though this would require modification of

the integrand in 11.14 so that L(e) will not be a function of time. More

data involving both waves and turbulence should be analyzed, using the
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above techniques to verify these results and more narrowly specify cut-off

values, etc.

Correlations between DA and "wave-break" should be tested in more

detail, perhaps with the Gossard (ibid) data set which involved vertical

carriage traverses along the BAO tower, wherein local values of R, were

measured. Ultimately, one would like to establish DA as a function of

local stability, so that DA turbulence cut-off values could be associated

with critical R,.
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